Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biosens Bioelectron ; 220: 114861, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2244685

ABSTRACT

We propose a label-free biosensor based on a porous silicon resonant microcavity and localized surface plasmon resonance. The biosensor detects SARS-CoV-2 antigen based on engineered trimeric angiotensin converting enzyme-2 binding protein, which is conserved across different variants. Robotic arms run the detection process including sample loading, incubation, sensor surface rinsing, and optical measurements using a portable spectrometer. Both the biosensor and the optical measurement system are readily scalable to accommodate testing a wide range of sample numbers. The limit of detection is 100 TCID50/ml. The detection time is 5 min, and the throughput of one single robotic site is up to 384 specimens in 30 min. The measurement interface requires little training, has standard operation, and therefore is suitable for widespread use in rapid and onsite COVID-19 screening or surveillance.


Subject(s)
Biosensing Techniques , COVID-19 , Optical Devices , Humans , COVID-19/diagnosis , SARS-CoV-2 , Surface Plasmon Resonance
2.
Anal Chim Acta ; 1244: 340860, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2175682

ABSTRACT

In the context of globalization, individuals have an increased chance of being infected by multiple viruses simultaneously, thereby highlighting the importance of developing multiplexed devices. In addition to sufficient sensitivity and rapid response, multi-virus sensing techniques are expected to offer additional advantages including high throughput, one-time sampling for parallel analysis, and full automation with data visualization. In this paper, we review the optical, electrochemical, and mechanical platforms that enable multi-virus biosensing. The working mechanisms of each platform, including the detection principle, transducer configuration, bio-interface design, and detected signals, are reviewed. The advantages and limitations, as well as the challenges in implementing various detection strategies in real-life scenarios, were evaluated. Future perspectives on multiplexed biosensing techniques are critically discussed. Earlier access to multi-virus biosensors will efficiently serve for immediate pandemic control, such as in emerging SARS-CoV-2 and monkeypox cases.


Subject(s)
Biosensing Techniques , COVID-19 , Viruses , Humans , COVID-19/diagnosis , SARS-CoV-2 , Biosensing Techniques/methods , Pandemics , Electrochemical Techniques
3.
Biosensors (Basel) ; 12(10)2022 Oct 20.
Article in English | MEDLINE | ID: covidwho-2082215

ABSTRACT

The recent COVID-19 pandemic has caused tremendous damage to the social economy and people's health. Some major issues fighting COVID-19 include early and accurate diagnosis and the shortage of ventilator machines for critical patients. In this manuscript, we describe a novel solution to deal with COVID-19: portable biosensing and wearable photoacoustic imaging for early and accurate diagnosis of infection and magnetic neuromodulation or minimally invasive electrical stimulation to replace traditional ventilation. The solution is a closed-loop system in that the three modules are integrated together and form a loop to cover all-phase strategies for fighting COVID-19. The proposed technique can guarantee ubiquitous and onsite detection, and an electrical hypoglossal stimulator can be more effective in helping severe patients and reducing complications caused by ventilators.


Subject(s)
COVID-19 , Pandemics , Humans , COVID-19/diagnosis , SARS-CoV-2
4.
Sensors (Basel) ; 22(10)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1855753

ABSTRACT

Tests for SARS-CoV-2 are crucial for the mass surveillance of the incidence of infection. The long waiting time for classic nucleic acid test results highlights the importance of developing alternative rapid biosensing methods. Herein, we propose a fiber-optic biolayer interferometry-based biosensor (FO-BLI) to detect SARS-CoV-2 spike proteins, extracellular domain (ECD), and receptor-binding domain (RBD) in artificial samples in 13 min. The FO-BLI biosensor utilized an antibody pair to capture and detect the spike proteins. The secondary antibody conjugated with horseradish peroxidase (HRP) reacted with the enzyme substrate for signal amplification. Two types of substrates, 3,3'-diaminobenzidine (DAB) and an advanced 3-Amino-9-ethylcarbazole (i.e., AMEC), were applied to evaluate their capabilities in enhancing signals and reaching high sensitivity. After careful comparison, the AMEC-based FO-BLI biosensor showed better assay performance, which detected ECD at a concentration of 32-720 pM and RBD of 12.5-400 pM in artificial saliva and serum, respectively. The limit of detection (LoD) for SARS-CoV-2 ECD and RBD was defined to be 36 pM and 12.5 pM, respectively. Morphology of the metal precipitates generated by the AMEC-HRP reaction in the fiber tips was observed using field emission scanning electron microscopy (SEM). Collectively, the developed FO-BLI biosensor has the potential to rapidly detect SARS-CoV-2 antigens and provide guidance for "sample-collect and result-out on-site" mode.


Subject(s)
Biosensing Techniques , COVID-19 , Spike Glycoprotein, Coronavirus , COVID-19/diagnosis , Humans , Membrane Glycoproteins/chemistry , SARS-CoV-2 , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism
5.
Biosens Bioelectron ; 204: 114054, 2022 May 15.
Article in English | MEDLINE | ID: covidwho-1739561

ABSTRACT

In this study, we report two fiber optic-biolayer interferometry (FO-BLI)-based biosensors for the rapid detection of SARS-CoV-2 neutralizing antibodies (NAbs) and binding antibodies (BAbs) in human serum. The use of signal enhancer 3,3'-diaminobenzidine enabled the detection of NAbs, anti-receptor binding domain (anti-RBD) BAbs, and anti-extracellular domain of spike protein (anti-S-ECD) BAbs up to as low as 10 ng/mL in both buffer and 100-fold diluted serum. NAbs and BAbs could be detected individually over 7.5 and 13 min, respectively, or simultaneously by prolonging the detection time of the former. The protocol for the detection of BAbs could be utilized for detection of the RBD-N501Y variant with equal sensitivity and speed. Results of the NAbs and the anti-RBD BAbs biosensors correlated well with those of the corresponding commercial assay kit. Clinical utility of the two FO-BLI biosensors were further validated using a small cohort of samples randomly taken from 16 enrolled healthy participants who received inactivated vaccines. Two potent serum antibodies were identified, which showed high neutralizing capacities toward RBD and pseudovirus. Overall, the rapid automated biosensors can be used for an individual sample measurement of NAbs and BAbs as well as for high-throughput analysis. The findings of this study would be useful in COVID-19 related studies in vaccine trials, research on dynamics of the immune response, and epidemiology studies.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
6.
Biosensors (Basel) ; 12(3)2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1715109

ABSTRACT

Cost-effective, rapid, and sensitive detection of SARS-CoV-2, in high-throughput, is crucial in controlling the COVID-19 epidemic. In this study, we proposed a vertical microcavity and localized surface plasmon resonance hybrid biosensor for SARS-CoV-2 detection in artificial saliva and assessed its efficacy. The proposed biosensor monitors the valley shifts in the reflectance spectrum, as induced by changes in the refractive index within the proximity of the sensor surface. A low-cost and fast method was developed to form nanoporous gold (NPG) with different surface morphologies on the vertical microcavity wafer, followed by immobilization with the SARS-CoV-2 antibody for capturing the virus. Modeling and simulation were conducted to optimize the microcavity structure and the NPG parameters. Simulation results revealed that NPG-deposited sensors performed better in resonance quality and in sensitivity compared to gold-deposited and pure microcavity sensors. The experiment confirmed the effect of NPG surface morphology on the biosensor sensitivity as demonstrated by simulation. Pre-clinical validation revealed that 40% porosity led to the highest sensitivity for SARS-CoV-2 pseudovirus at 319 copies/mL in artificial saliva. The proposed automatic biosensing system delivered the results of 100 samples within 30 min, demonstrating its potential for on-site coronavirus detection with sufficient sensitivity.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , Gold/chemistry , Humans , SARS-CoV-2 , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL